Operating loads calculation

Effective loading calculation

Various factors affect the calculation of the loading of isel guides. This includes the position of the

C of G of the load, tensile and compressive forces, torgues, load and acceleration forces.

For a linear bench on 4 bearings, the bearing forces are calculated according to the force application point for various load directions.

The calculation can also be applied to a slide configuration with 2 slides.

The dimension LL/2 is used as the dimension L (see dimensioned drawings for the relevant guides).

The load factor in this case is CO/2.

Combined load

If the load alignment of an element does not coincide with one of the main load directions, then the equivalent load is calculated:

If a force F and a torque M load an element simultaneously, then the dynamically equivalent load is:

 $\mathbf{P} = \left| \mathbf{F} \right| + \left| \mathbf{M} \right| \cdot \frac{\mathbf{C}_{0}}{\mathbf{M}_{0}(\mathbf{x}\mathbf{y}\mathbf{z})}$

Equivalent load calculation

Operating conditions

dynamically equiva <u>lent load</u>
opposing force $=\sqrt{1^2 + F_2^2}$
vertical component see sketch (4)
horizontal component see sketch (4)
static load factor
opposing torque
static torque in the direction of the
opposing torque

According to DIN, the dynamically equivalent load should not exceed the value $P = 0.5 \cdot C$.

 $L_{h} = \frac{1666}{V} \cdot \left(\frac{C}{P}\right)^{3}$

Equivalent load

Number of double strokes per minute n_{osz} [min]

average speed of movement v [m/min]

made by **isel**°

Linear guides

MECHANICS 2-41 mechanics

Operating loads calculation

Load vertical on the **bench surface**

Loading

Dimensioned figure

 $P_1 \dots P_4 = \frac{F \cdot L_4}{2a}$ $P_{t1} = P_{t3} = \frac{F}{4} + \frac{F \cdot L_3}{2L}$

$$P_{t_2} = P_{t_4} = \frac{F}{4} - \frac{F \cdot L_3}{2L}$$