Operating loads calculation

Effective loading calculation

Various factors affect the calculation of the loading of isel guides. This includes the position of the
C of G of the load, tensile and compressive forces, torques, load and acceleration forces.

For a linear bench on 4 bearings, the bearing forces are calculated according to the force application point for various load directions.

The calculation can also be applied to a slide configuration with 2 slides.

The dimension LL/2 is used as the dimension L (see dimensioned drawings for the relevant guides).

The load factor in this case is CO/2.

Combined load

If the load alignment of an element does not coincide with one of the main load directions, then the equivalent load is calculated:
$P=\left|F_{1}\right|+\left|F_{2}\right|$
If a force F and a torque M load an element simultaneously, then the dynamically equivalent load is:
$P=|F|+|M| \cdot \frac{C_{0}}{M_{0(X X Z)}}$

$P[N]$	dynamically equivalent load
$F[N]$	opposing force $=\sqrt{1^{2}+F_{2}{ }^{2}}$
F1 $[\mathrm{N}]$	vertical component see sketch (4)
F2 [N]	horizontal component see sketch (4)
CO $[\mathrm{N}]$	static load factor
$\mathrm{M}[\mathrm{Nm}]$	opposing torque $\mathrm{MO}(\mathrm{XYZ})[\mathrm{Nm}]$ static torque in the direction of the opposing torque

According to DIN, the dynamically equivalent load should not exceed the value $P=0.5 \cdot \mathrm{C}$.

Equivalent load calculation

Operating conditions
A incremental change B uniform change

Equivalent load
$P=\sqrt[3]{\frac{1}{L} \cdot\left(P_{1}^{3} \cdot L_{1}+P_{2}^{3} \cdot L_{2}+P_{3}^{3} \cdot L_{3} \ldots+P_{n}{ }^{3} \cdot L_{n}\right)} \quad P=\frac{1}{3} \cdot\left(P_{\text {min }}+2 \cdot P_{\text {max }}\right)$
$\mathrm{P} \quad$ dynamically equivalent load $[\mathrm{N}] \quad \mathrm{P}_{\text {min }} \quad$ smallest load [N$]$
$P_{1 . \ldots n}$ Individual load [N]
L Total travel [m]
$\mathrm{L}_{1 . . \mathrm{n}} \quad$ Individual travel $[\mathrm{m}]$

Static safety

Operating conditions	S_{0}	$S_{0}=\frac{C_{0}}{P_{0}}=\frac{M_{0}}{M}$	S_{0}	static load safety
Normal motion	$1.0-3.0$		C_{0}	static load factor $[\mathrm{N}]$
High speed	$2.0-4.0$		P_{0}	statically equivalent bearing loading $[\mathrm{N}]$
With impacts and vibration	$3.0-5.0$		M_{0}	static loading torque $[\mathrm{Nm}]$
			equivalent static torque $[\mathrm{Nm}]$	

Nominal working life

The nominal working life is achieved or exceeded by 90% of an adequately large quantity of identical bearings, before the first signs of material fatigue become apparent.

$L_{h}=\frac{833}{H \cdot n_{o s z}} \cdot\left(\frac{C}{P}\right)^{3}$
$L_{h}=\frac{1666}{V} \cdot\left(\frac{C}{P}\right)^{3}$

L [m] nominal working life in units of $100,000 \mathrm{~m}$
$L_{h}[h] \quad$ nominal working life in hours run
C [N] dynamic load factor
P [N] dynamically equivalent load
H [m]
$n_{0 S I}$ [min]
v [$\mathrm{m} / \mathrm{min}]$
single stroke of the oscillating motion Number of double strokes per minute average speed of movement

Operating loads calculation

Load vertical on the bench surface
Loading
Dimensioned figure
Load on a trolley

$P_{1}=\frac{F}{4}+\frac{F \cdot L_{1}}{2 L}+\frac{F \cdot L_{2}}{2 a}$
$P_{2}=\frac{F}{4}-\frac{F \cdot L_{1}}{2 L}+\frac{F \cdot L_{2}}{2 a}$
$P_{3}=\frac{F}{4}+\frac{\mathrm{F} \cdot \mathrm{L}_{1}}{2 \mathrm{~L}}-\frac{\mathrm{F} \cdot \mathrm{L}_{2}}{2 \mathrm{a}}$
$P_{4}=\frac{F}{4}-\frac{F \cdot L_{1}}{2 L}-\frac{F \cdot L_{2}}{2 a}$

Load in direction of motion
Loading
Dimensioned figure
Load on a trolley

$$
\begin{aligned}
& P_{1} \ldots P_{4}=\frac{F \cdot L_{6}}{2 L} \\
& P_{t 1} \ldots P_{t 4}=\frac{F \cdot L_{5}}{2 L}
\end{aligned}
$$

Load at right angles to the direction of motion
Loading
Dimensioned figure
Load on a trolley

$P_{1} \ldots P_{4}=\frac{F \cdot L_{4}}{2 a}$
$P_{t 1}=P_{t 3}=\frac{F}{4}+\frac{F \cdot L_{3}}{2 L}$
$P_{t 2}=P_{t 4}=\frac{F}{4}-\frac{F \cdot L_{3}}{2 L}$

